CAIE P3 2002 November — Question 8

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2002
SessionNovember
TopicComplex Numbers Argand & Loci

8
  1. Find the two square roots of the complex number \(- 3 + 4 \mathrm { i }\), giving your answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  2. The complex number \(z\) is given by $$z = \frac { - 1 + 3 \mathrm { i } } { 2 + \mathrm { i } } .$$
    1. Express \(z\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
    2. Show on a sketch of an Argand diagram, with origin \(O\), the points \(A , B\) and \(C\) representing the complex numbers \(- 1 + 3 \mathrm { i } , 2 + \mathrm { i }\) and \(z\) respectively.
    3. State an equation relating the lengths \(O A , O B\) and \(O C\).