CAIE P3 2002 November — Question 5

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2002
SessionNovember
TopicHarmonic Form

5
  1. Express \(4 \sin \theta - 3 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), stating the value of \(\alpha\) correct to 2 decimal places. Hence
  2. solve the equation $$4 \sin \theta - 3 \cos \theta = 2$$ giving all values of \(\theta\) such that \(0 ^ { \circ } < \theta < 360 ^ { \circ }\),
  3. write down the greatest value of \(\frac { 1 } { 4 \sin \theta - 3 \cos \theta + 6 }\).