Find the complex number \(z\) satisfying the equation \(z ^ { * } + 1 = 2 \mathrm { i } z\), where \(z ^ { * }\) denotes the complex conjugate of \(z\). Give your answer in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities \(| z + 1 - 3 \mathrm { i } | \leqslant 1\) and \(\operatorname { Im } z \geqslant 3\), where \(\operatorname { Im } z\) denotes the imaginary part of \(z\).
Determine the difference between the greatest and least values of \(\arg z\) for points lying in this region.