CAIE P3 2019 June — Question 6

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2019
SessionJune
TopicFixed Point Iteration

6
\includegraphics[max width=\textwidth, alt={}, center]{772393d7-6e81-4b99-913a-63c9f87d1af2-08_492_812_260_664} In the diagram, \(A\) is the mid-point of the semicircle with centre \(O\) and radius \(r\). A circular arc with centre \(A\) meets the semicircle at \(B\) and \(C\). The angle \(O A B\) is equal to \(x\) radians. The area of the shaded region bounded by \(A B , A C\) and the arc with centre \(A\) is equal to half the area of the semicircle.
  1. Use triangle \(O A B\) to show that \(A B = 2 r \cos x\).
  2. Hence show that \(x = \cos ^ { - 1 } \sqrt { } \left( \frac { \pi } { 16 x } \right)\).
  3. Verify by calculation that \(x\) lies between 1 and 1.5.
  4. Use an iterative formula based on the equation in part (ii) to determine \(x\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.