OCR FP2 2013 January — Question 5

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2013
SessionJanuary
TopicTaylor series
TypeExponential or trigonometric base functions

5 You are given that \(\mathrm { f } ( x ) = \mathrm { e } ^ { - x } \sin x\).
  1. Find \(f ( 0 )\) and \(f ^ { \prime } ( 0 )\).
  2. Show that \(\mathrm { f } ^ { \prime \prime } ( x ) = - 2 \mathrm { f } ^ { \prime } ( x ) - 2 \mathrm { f } ( x )\) and hence, or otherwise, find \(\mathrm { f } ^ { \prime \prime } ( 0 )\).
  3. Find a similar expression for \(\mathrm { f } ^ { \prime \prime \prime } ( x )\) and hence, or otherwise, find \(\mathrm { f } ^ { \prime \prime \prime } ( 0 )\).
  4. Find the Maclaurin series for \(\mathrm { f } ( x )\) up to and including the term in \(x ^ { 3 }\).