OCR FP2 2011 January — Question 6

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2011
SessionJanuary
TopicArea Under & Between Curves

6
\includegraphics[max width=\textwidth, alt={}, center]{debf6581-25ff-4692-bdfb-154675a3cdb0-3_608_1134_258_504} The diagram shows the curve \(y = \mathrm { f } ( x )\), defined by $$f ( x ) = \begin{cases} x ^ { x } & \text { for } 0 < x \leqslant 1 ,
1 & \text { for } x = 0 . \end{cases}$$
  1. By first taking logarithms, show that the curve has a stationary point at \(x = \mathrm { e } ^ { - 1 }\). The area under the curve from \(x = 0.5\) to \(x = 1\) is denoted by \(A\).
  2. By considering the set of three rectangles shown in the diagram, show that a lower bound for \(A\) is 0.388 .
  3. By considering another set of three rectangles, find an upper bound for \(A\), giving 3 decimal places in your answer. The area under the curve from \(x = 0\) to \(x = 0.5\) is denoted by \(B\).
  4. Draw a diagram to show rectangles which could be used to find lower and upper bounds for \(B\), using not more than three rectangles for each bound. (You are not required to find the bounds.)