2 Fig. 2 shows the unit square, OABC , and its image, \(\mathrm { OA } ^ { \prime } \mathrm { B } ^ { \prime } \mathrm { C } ^ { \prime }\), after undergoing a transformation.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3df020b0-fb7b-454b-b354-36cc2b8df5f6-2_595_739_571_664}
\captionsetup{labelformat=empty}
\caption{Fig. 2}
\end{figure}
- Write down the matrix \(\mathbf { T }\) representing this transformation.
The quadrilateral \(\mathrm { OA } ^ { \prime } \mathrm { B } ^ { \prime } \mathrm { C } ^ { \prime }\) is reflected in the \(x\)-axis to give a new quadrilateral, \(\mathrm { OA } ^ { \prime \prime } \mathrm { B } ^ { \prime \prime } \mathrm { C } ^ { \prime \prime }\).
- Write down the matrix representing reflection in the \(x\)-axis.
- Find the single matrix that will transform OABC onto \(\mathrm { OA } ^ { \prime \prime } \mathrm { B } ^ { \prime \prime } \mathrm { C } ^ { \prime \prime }\).