OCR MEI FP1 2014 June — Question 2

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
Year2014
SessionJune
TopicLinear transformations

2 Fig. 2 shows the unit square, OABC , and its image, \(\mathrm { OA } ^ { \prime } \mathrm { B } ^ { \prime } \mathrm { C } ^ { \prime }\), after undergoing a transformation. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3df020b0-fb7b-454b-b354-36cc2b8df5f6-2_595_739_571_664} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure}
  1. Write down the matrix \(\mathbf { T }\) representing this transformation. The quadrilateral \(\mathrm { OA } ^ { \prime } \mathrm { B } ^ { \prime } \mathrm { C } ^ { \prime }\) is reflected in the \(x\)-axis to give a new quadrilateral, \(\mathrm { OA } ^ { \prime \prime } \mathrm { B } ^ { \prime \prime } \mathrm { C } ^ { \prime \prime }\).
  2. Write down the matrix representing reflection in the \(x\)-axis.
  3. Find the single matrix that will transform OABC onto \(\mathrm { OA } ^ { \prime \prime } \mathrm { B } ^ { \prime \prime } \mathrm { C } ^ { \prime \prime }\).