3 Fig. 3 shows the unit square, OABC , and its image, \(\mathrm { OA } ^ { \prime } \mathrm { B } ^ { \prime } \mathrm { C } ^ { \prime }\), after undergoing a transformation.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{35094899-149c-438e-b6c8-b333d2fefc0c-2_465_531_806_806}
\captionsetup{labelformat=empty}
\caption{Fig. 3}
\end{figure}
- Write down the matrix \(\mathbf { P }\) representing this transformation.
- The parallelogram \(\mathrm { OA } ^ { \prime } \mathrm { B } ^ { \prime } \mathrm { C } ^ { \prime }\) is transformed by the matrix \(\mathbf { Q } = \left( \begin{array} { r r } 2 & - 1
0 & 3 \end{array} \right)\). Find the coordinates of the vertices of its image, \(\mathrm { OA } ^ { \prime \prime } \mathrm { B } ^ { \prime \prime } \mathrm { C } ^ { \prime \prime }\), following this transformation. - Describe fully the transformation represented by \(\mathbf { Q P }\).