OCR MEI FP1 2009 January — Question 3

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
Year2009
SessionJanuary
TopicLinear transformations

3 Fig. 3 shows the unit square, OABC , and its image, \(\mathrm { OA } ^ { \prime } \mathrm { B } ^ { \prime } \mathrm { C } ^ { \prime }\), after undergoing a transformation. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{35094899-149c-438e-b6c8-b333d2fefc0c-2_465_531_806_806} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Write down the matrix \(\mathbf { P }\) representing this transformation.
  2. The parallelogram \(\mathrm { OA } ^ { \prime } \mathrm { B } ^ { \prime } \mathrm { C } ^ { \prime }\) is transformed by the matrix \(\mathbf { Q } = \left( \begin{array} { r r } 2 & - 1
    0 & 3 \end{array} \right)\). Find the coordinates of the vertices of its image, \(\mathrm { OA } ^ { \prime \prime } \mathrm { B } ^ { \prime \prime } \mathrm { C } ^ { \prime \prime }\), following this transformation.
  3. Describe fully the transformation represented by \(\mathbf { Q P }\).