OCR MEI FP1 (Further Pure Mathematics 1) 2009 January

Question 1
View details
1
  1. Find the roots of the quadratic equation \(z ^ { 2 } - 6 z + 10 = 0\) in the form \(a + b \mathrm { j }\).
  2. Express these roots in modulus-argument form.
Question 2
View details
2 Find the values of \(A , B\) and \(C\) in the identity \(2 x ^ { 2 } - 13 x + 25 \equiv A ( x - 3 ) ^ { 2 } - B ( x - 2 ) + C\).
Question 3
View details
3 Fig. 3 shows the unit square, OABC , and its image, \(\mathrm { OA } ^ { \prime } \mathrm { B } ^ { \prime } \mathrm { C } ^ { \prime }\), after undergoing a transformation. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{35094899-149c-438e-b6c8-b333d2fefc0c-2_465_531_806_806} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Write down the matrix \(\mathbf { P }\) representing this transformation.
  2. The parallelogram \(\mathrm { OA } ^ { \prime } \mathrm { B } ^ { \prime } \mathrm { C } ^ { \prime }\) is transformed by the matrix \(\mathbf { Q } = \left( \begin{array} { r r } 2 & - 1
    0 & 3 \end{array} \right)\). Find the coordinates of the vertices of its image, \(\mathrm { OA } ^ { \prime \prime } \mathrm { B } ^ { \prime \prime } \mathrm { C } ^ { \prime \prime }\), following this transformation.
  3. Describe fully the transformation represented by \(\mathbf { Q P }\).
Question 4
View details
4 Write down the equation of the locus represented in the Argand diagram shown in Fig. 4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{35094899-149c-438e-b6c8-b333d2fefc0c-2_474_497_1932_824} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
Question 5
View details
5 The cubic equation \(x ^ { 3 } - 5 x ^ { 2 } + p x + q = 0\) has roots \(\alpha , - 3 \alpha\) and \(\alpha + 3\). Find the values of \(\alpha , p\) and \(q\).
Question 6
View details
6 Using the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) show that $$\sum _ { r = 1 } ^ { n } r \left( r ^ { 2 } - 3 \right) = \frac { 1 } { 4 } n ( n + 1 ) ( n + 3 ) ( n - 2 ) .$$
Question 7
View details
7 Prove by induction that \(12 + 36 + 108 + \ldots + 4 \times 3 ^ { n } = 6 \left( 3 ^ { n } - 1 \right)\) for all positive integers \(n\).
Question 8
View details
8 Fig. 8 shows part of the graph of \(y = \frac { x ^ { 2 } - 3 } { ( x - 4 ) ( x + 2 ) }\). Two sections of the graph have been omitted. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{35094899-149c-438e-b6c8-b333d2fefc0c-3_725_1025_1160_559} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Write down the coordinates of the points where the curve crosses the axes.
  2. Write down the equations of the two vertical asymptotes and the one horizontal asymptote.
  3. Copy Fig. 8 and draw in the two missing sections.
  4. Solve the inequality \(\frac { x ^ { 2 } - 3 } { ( x - 4 ) ( x + 2 ) } \leqslant 0\).
Question 9
View details
9 Two complex numbers, \(\alpha\) and \(\beta\), are given by \(\alpha = 1 + \mathrm { j }\) and \(\beta = 2 - \mathrm { j }\).
  1. Express \(\alpha + \beta , \alpha \alpha ^ { * }\) and \(\frac { \alpha + \beta } { \alpha }\) in the form \(a + b \mathrm { j }\).
  2. Find a quadratic equation with roots \(\alpha\) and \(\alpha ^ { * }\).
  3. \(\alpha\) and \(\beta\) are roots of a quartic equation with real coefficients. Write down the two other roots and find this quartic equation in the form \(z ^ { 4 } + A z ^ { 3 } + B z ^ { 2 } + C z + D = 0\).
Question 10
View details
10 You are given that \(\mathbf { A } = \left( \begin{array} { r r r } 3 & 4 & - 1
1 & - 1 & k
- 2 & 7 & - 3 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { r r c } 11 & - 5 & - 7
1 & 11 & 5 + k
- 5 & 29 & 7 \end{array} \right)\) and that \(\mathbf { A B }\) is of the form \(\mathbf { A B } = \left( \begin{array} { c c c } 42 & \alpha & 4 k - 8
10 - 5 k & - 16 + 29 k & - 12 + 6 k
0 & 0 & \beta \end{array} \right)\).
  1. Show that \(\alpha = 0\) and \(\beta = 28 + 7 k\).
  2. Find \(\mathbf { A B }\) when \(k = 2\).
  3. For the case when \(k = 2\) write down the matrix \(\mathbf { A } ^ { - 1 }\).
  4. Use the result from part (iii) to solve the following simultaneous equations. $$\begin{aligned} 3 x + 4 y - z & = 1
    x - y + 2 z & = - 9
    - 2 x + 7 y - 3 z & = 26 \end{aligned}$$ \footnotetext{OCR
    RECOGNISING ACHIEVEMENT