A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q8
OCR FP1 2015 June — Question 8
Exam Board
OCR
Module
FP1 (Further Pure Mathematics 1)
Year
2015
Session
June
Topic
Sequences and series, recurrence and convergence
8
Show that \(\frac { 3 } { r - 1 } - \frac { 2 } { r } - \frac { 1 } { r + 1 } \equiv \frac { 4 r + 2 } { r \left( r ^ { 2 } - 1 \right) }\).
Hence find an expression, in terms of \(n\), for \(\sum _ { r = 2 } ^ { n } \frac { 4 r + 2 } { r \left( r ^ { 2 } - 1 \right) }\).
Hence find the value of \(\sum _ { r = 4 } ^ { \infty } \frac { 4 r + 2 } { r \left( r ^ { 2 } - 1 \right) }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10