A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q7
CAIE P1 2020 November — Question 7
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2020
Session
November
Topic
Reciprocal Trig & Identities
7
Show that \(\frac { \sin \theta } { 1 - \sin \theta } - \frac { \sin \theta } { 1 + \sin \theta } \equiv 2 \tan ^ { 2 } \theta\).
Hence solve the equation \(\frac { \sin \theta } { 1 - \sin \theta } - \frac { \sin \theta } { 1 + \sin \theta } = 8\), for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
This paper
(12 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12