7
\includegraphics[max width=\textwidth, alt={}, center]{c6bac5bf-960e-4c3d-b9fa-c52de66ba719-4_652_1068_255_500}
The diagram shows the ( \(t , v\) ) graphs for two particles \(A\) and \(B\) which move on the same straight line. The units of \(v\) and \(t\) are \(\mathrm { ms } ^ { - 1 }\) and s respectively. Both particles are at the point \(S\) on the line when \(t = 0\). The particle \(A\) is initially at rest, and moves with acceleration \(0.18 t \mathrm {~ms} ^ { - 2 }\) until the two particles collide when \(t = 16\). The initial velocity of \(B\) is \(U \mathrm {~ms} ^ { - 1 }\) and \(B\) has variable acceleration for the first five seconds of its motion. For the next ten seconds of its motion \(B\) has a constant velocity of \(9 \mathrm {~ms} ^ { - 1 }\); finally \(B\) moves with constant deceleration for one second before it collides with \(A\).
- Calculate the value of \(t\) at which the two particles have the same velocity.
For \(0 \leqslant t \leqslant 5\) the distance of \(B\) from \(S\) is \(\left( U t + 0.08 t ^ { 3 } \right) \mathrm { m }\).
- Calculate \(U\) and verify that when \(t = 5 , B\) is 25 m from \(S\).
- Calculate the velocity of \(B\) when \(t = 16\).
\section*{END OF QUESTION PAPER}