4
\includegraphics[max width=\textwidth, alt={}, center]{c6bac5bf-960e-4c3d-b9fa-c52de66ba719-2_144_1317_1655_372}
Four particles \(A , B , C\) and \(D\) are on the same straight line on a smooth horizontal table. \(A\) has speed \(6 \mathrm {~ms} ^ { - 1 }\) and is moving towards \(B\). The speed of \(B\) is \(2 \mathrm {~ms} ^ { - 1 }\) and \(B\) is moving towards \(A\). The particle \(C\) is moving with speed \(5 \mathrm {~ms} ^ { - 1 }\) away from \(B\) and towards \(D\), which is stationary (see diagram). The first collision is between \(A\) and \(B\) which have masses 0.8 kg and 0.2 kg respectively.
- After the particles collide \(A\) has speed \(4 \mathrm {~ms} ^ { - 1 }\) in its original direction of motion. Calculate the speed of \(B\) after the collision.
The second collision is between \(C\) and \(D\) which have masses 0.3 kg and 0.1 kg respectively.
- The particles coalesce when they collide. Find the speed of the combined particle after this collision.
The third collision is between \(B\) and the combined particle, after which no further collisions occur.
- Calculate the greatest possible speed of the combined particle after the third collision.