4
\includegraphics[max width=\textwidth, alt={}, center]{b7f05d10-9d3c-4098-846d-ca6511c75c5d-3_298_540_262_735}
The diagram shows the \(( t , v )\) graph of a car moving along a straight road, where \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the velocity of the car at time \(t \mathrm {~s}\) after it passes through the point \(A\). The car passes through \(A\) with velocity \(18 \mathrm {~ms} ^ { - 1 }\), and moves with constant acceleration \(2.4 \mathrm {~ms} ^ { - 2 }\) until \(t = 5\). The car subsequently moves with constant velocity until it is 300 m from \(A\). When the car is more than 300 m from \(A\), it has constant deceleration \(6 \mathrm {~ms} ^ { - 2 }\), until it comes to rest.
- Find the greatest speed of the car.
- Calculate the value of \(t\) for the instant when the car begins to decelerate.
- Calculate the distance from \(A\) of the car when it is at rest.