1
\includegraphics[max width=\textwidth, alt={}, center]{b7f05d10-9d3c-4098-846d-ca6511c75c5d-2_135_917_274_575}
Three particles \(P , Q\) and \(R\) have masses \(0.1 \mathrm {~kg} , 0.3 \mathrm {~kg}\) and 0.6 kg respectively. The particles travel along the same straight line on a smooth horizontal table and have velocities \(1.5 \mathrm {~ms} ^ { - 1 } , 1.1 \mathrm {~ms} ^ { - 1 }\) and \(0.8 \mathrm {~ms} ^ { - 1 }\) respectively (see diagram). \(P\) collides with \(Q\) and then \(Q\) collides with \(R\). In the second collision \(Q\) and \(R\) coalesce and subsequently move with a velocity of \(1 \mathrm {~ms} ^ { - 1 }\).
- Find the speed of \(Q\) immediately before the second collision.
- Calculate the change in momentum of \(P\) in the first collision.