OCR M1 2012 June — Question 6

Exam BoardOCR
ModuleM1 (Mechanics 1)
Year2012
SessionJune
TopicMoments

6
\includegraphics[max width=\textwidth, alt={}, center]{f0813713-d677-4ed7-87e1-971a64bdb6ff-4_328_698_255_657} A particle \(P\) lies on a slope inclined at \(30 ^ { \circ }\) to the horizontal. \(P\) is attached to one end of a taut light inextensible string which passes through a small smooth ring \(Q\) of mass \(m \mathrm {~kg}\). The portion \(P Q\) of the string is horizontal and the other portion of the string is inclined at \(40 ^ { \circ }\) to the vertical. A horizontal force of magnitude \(H \mathrm {~N}\), acting away from \(P\), is applied to \(Q\) (see diagram). The tension in the string is 6.4 N , and the string is in the vertical plane containing the line of greatest slope on which \(P\) lies. Both \(P\) and \(Q\) are in equilibrium.
  1. Calculate \(m\).
  2. Calculate \(H\).
  3. Given that the weight of \(P\) is 32 N , and that \(P\) is in limiting equilibrium, show that the coefficient of friction between \(P\) and the slope is 0.879 , correct to 3 significant figures.
    \(Q\) and the string are now removed.
  4. Determine whether \(P\) remains in equilibrium.