6
\includegraphics[max width=\textwidth, alt={}, center]{f0813713-d677-4ed7-87e1-971a64bdb6ff-4_328_698_255_657}
A particle \(P\) lies on a slope inclined at \(30 ^ { \circ }\) to the horizontal. \(P\) is attached to one end of a taut light inextensible string which passes through a small smooth ring \(Q\) of mass \(m \mathrm {~kg}\). The portion \(P Q\) of the string is horizontal and the other portion of the string is inclined at \(40 ^ { \circ }\) to the vertical. A horizontal force of magnitude \(H \mathrm {~N}\), acting away from \(P\), is applied to \(Q\) (see diagram). The tension in the string is 6.4 N , and the string is in the vertical plane containing the line of greatest slope on which \(P\) lies. Both \(P\) and \(Q\) are in equilibrium.
- Calculate \(m\).
- Calculate \(H\).
- Given that the weight of \(P\) is 32 N , and that \(P\) is in limiting equilibrium, show that the coefficient of friction between \(P\) and the slope is 0.879 , correct to 3 significant figures.
\(Q\) and the string are now removed. - Determine whether \(P\) remains in equilibrium.