5
\includegraphics[max width=\textwidth, alt={}, center]{f0813713-d677-4ed7-87e1-971a64bdb6ff-3_291_182_799_945}
Particles \(P\) and \(Q\), of masses 0.4 kg and \(m \mathrm {~kg}\) respectively, are joined by a light inextensible string which passes over a smooth pulley. The particles are released from rest at the same height above a horizontal surface; the string is taut and the portions of the string not in contact with the pulley are vertical (see diagram). \(Q\) begins to descend with acceleration \(2.45 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) and reaches the surface 0.3 s after being released. Subsequently, \(Q\) remains at rest and \(P\) never reaches the pulley.
- Calculate the tension in the string while \(Q\) is in motion.
- Calculate the momentum lost by \(Q\) when it reaches the surface.
- Calculate the greatest height of \(P\) above the surface.
\section*{[Questions 6 and 7 are printed overleaf.]}