CAIE P3 2017 June — Question 7

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2017
SessionJune
TopicComplex Numbers Argand & Loci

7 Throughout this question the use of a calculator is not permitted.
The complex numbers \(u\) and \(w\) are defined by \(u = - 1 + 7 \mathrm { i }\) and \(w = 3 + 4 \mathrm { i }\).
  1. Showing all your working, find in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real, the complex numbers \(u - 2 w\) and \(\frac { u } { w }\).
    In an Argand diagram with origin \(O\), the points \(A , B\) and \(C\) represent the complex numbers \(u , w\) and \(u - 2 w\) respectively.
  2. Prove that angle \(A O B = \frac { 1 } { 4 } \pi\).
  3. State fully the geometrical relation between the line segments \(O B\) and \(C A\).