OCR M1 2010 January — Question 4

Exam BoardOCR
ModuleM1 (Mechanics 1)
Year2010
SessionJanuary
TopicPulley systems

4
\includegraphics[max width=\textwidth, alt={}, center]{c9e725ad-561b-4e98-9b8f-7c9d3c8e67e6-3_494_255_258_945} Particles \(P\) and \(Q\), of masses 0.4 kg and 0.3 kg respectively, are attached to the ends of a light inextensible string. The string passes over a smooth fixed pulley and the sections of the string not in contact with the pulley are vertical. \(P\) rests in limiting equilibrium on a plane inclined at \(60 ^ { \circ }\) to the horizontal (see diagram).
  1. (a) Calculate the components, parallel and perpendicular to the plane, of the contact force exerted by the plane on \(P\).
    (b) Find the coefficient of friction between \(P\) and the plane.
    \(P\) is held stationary and a particle of mass 0.2 kg is attached to \(Q\). With the string taut, \(P\) is released from rest.
  2. Calculate the tension in the string and the acceleration of the particles.
    \includegraphics[max width=\textwidth, alt={}, center]{c9e725ad-561b-4e98-9b8f-7c9d3c8e67e6-3_579_1195_1553_475} The \(( t , v )\) diagram represents the motion of two cyclists \(A\) and \(B\) who are travelling along a horizontal straight road. At time \(t = 0 , A\), who cycles with constant speed \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), overtakes \(B\) who has initial speed \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). From time \(t = 0 B\) cycles with constant acceleration for 20 s . When \(t = 20\) her speed is \(11 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), which she subsequently maintains.