OCR MEI S3 2011 June — Question 2

Exam BoardOCR MEI
ModuleS3 (Statistics 3)
Year2011
SessionJune
TopicChi-squared distribution

2 Scientists researching into the chemical composition of dust in space collect specimens using a specially designed spacecraft. The craft collects the particles of dust in trays that are made up of a large array of cells containing aerogel. The aerogel traps the particles that penetrate into the cells.
  1. For a random sample of 100 cells, the number of particles of dust in each cell was counted, giving the following results.
    Number of particles0123456789\(10 +\)
    Frequency4710201715109530
    It is thought that the number of particles collected in each cell can be modelled using the distribution Poisson(4.2) since 4.2 is the sample mean for these data. Some of the calculations for a \(\chi ^ { 2 }\) test are shown below. The cells for 8,9 and \(10 +\) particles have been combined.
    Number of particles
    Observed frequency
    Expected frequency
    Contribution to \(X ^ { 2 }\)
    567\(8 +\)
    151098
    16.3311.446.866.39
    0.10830.18130.66760.4056
    Complete the calculations and carry out the test using a \(10 \%\) significance level to see whether the number of particles per cell may be modelled in this way.
  2. The diameters of the dust particles are believed to be distributed symmetrically about a median of 15 micrometres \(( \mu \mathrm { m } )\). For a random sample of 20 particles, the sum of the signed ranks of the diameters of the particles smaller than \(15 \mu \mathrm {~m} \left( W _ { - } \right)\)is found to be 53 . Test at the \(5 \%\) level of significance whether the median diameter appears to be more than \(15 \mu \mathrm {~m}\).