OCR S3 2013 June — Question 5

Exam BoardOCR
ModuleS3 (Statistics 3)
Year2013
SessionJune
TopicContinuous Probability Distributions and Random Variables
TypeVerify algebraic PDF formula

5 The continuous random variable \(Y\) has probability density function given by $$\mathrm { f } ( y ) = \begin{cases} \ln ( y ) & 1 \leqslant y \leqslant \mathrm { e }
0 & \text { otherwise } \end{cases}$$
  1. Verify that this is a valid probability density function.
  2. Show that the (cumulative) distribution function of \(Y\) is given by $$\mathrm { F } ( y ) = \begin{cases} 0 & y < 1
    y \ln y - y + 1 & 1 \leqslant y \leqslant \mathrm { e }
    1 & \text { otherwise } \end{cases}$$
  3. Verify that the upper quartile of \(Y\) lies in the interval [2.45, 2.46].
  4. Find the (cumulative) distribution function of \(X\) where \(X = \ln Y\).