2 The continuous random variable \(U\) has (cumulative) distribution function given by
$$\mathrm { F } ( u ) = \begin{cases} \frac { 1 } { 5 } \mathrm { e } ^ { u } & u < 0
1 - \frac { 4 } { 5 } \mathrm { e } ^ { - \frac { 1 } { 4 } u } & u \geqslant 0 \end{cases}$$
- Find the upper quartile of \(U\).
- Find the probability density function of \(U\).