OCR MEI S2 2009 January — Question 4

Exam BoardOCR MEI
ModuleS2 (Statistics 2)
Year2009
SessionJanuary
TopicChi-squared distribution

4 A gardening research organisation is running a trial to examine the growth and the size of flowers of various plants.
  1. In the trial, seeds of three types of plant are sown. The growth of each plant is classified as good, average or poor. The results are shown in the table.
    \multirow{2}{*}{}Growth\multirow[t]{2}{*}{Row totals}
    GoodAveragePoor
    \multirow{3}{*}{Type of plant}Coriander12281555
    Aster7182348
    Fennel14221147
    Column totals336849150
    Carry out a test at the \(5 \%\) significance level to examine whether there is any association between growth and type of plant. State carefully your null and alternative hypotheses. Include a table of the contributions of each cell to the test statistic.
  2. It is known that the diameter of marigold flowers is Normally distributed with mean 47 mm and standard deviation 8.5 mm . A certain fertiliser is expected to cause flowers to have a larger mean diameter, but without affecting the standard deviation. A large number of marigolds are grown using this fertiliser. The diameters of a random sample of 50 of the flowers are measured and the mean diameter is found to be 49.2 mm . Carry out a hypothesis test at the \(1 \%\) significance level to check whether flowers grown with this fertiliser appear to be larger on average. Use hypotheses \(\mathrm { H } _ { 0 } : \mu = 47 , \mathrm { H } _ { 1 } : \mu > 47\), where \(\mu \mathrm { mm }\) represents the mean diameter of all marigold flowers grown with this fertiliser.