8 The points \(A\) and \(B\) have position vectors relative to the origin \(O\) given by
$$\overrightarrow { O A } = \left( \begin{array} { c }
3 \sin \alpha
2 \cos \alpha
- 1
\end{array} \right) \text { and } \overrightarrow { O B } = \left( \begin{array} { c }
2 \cos \alpha
4 \sin \alpha
3
\end{array} \right)$$
where \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). It is given that \(\overrightarrow { O A }\) and \(\overrightarrow { O B }\) are perpendicular.
- Calculate the two possible values of \(\alpha\).
- Calculate the area of triangle \(O A B\) for the smaller value of \(\alpha\) from part (i).