A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Differentiating Transcendental Functions
Q1
OCR MEI C3 2013 January — Question 1
Exam Board
OCR MEI
Module
C3 (Core Mathematics 3)
Year
2013
Session
January
Topic
Differentiating Transcendental Functions
1
Given that \(y = \mathrm { e } ^ { - x } \sin 2 x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
Hence show that the curve \(y = \mathrm { e } ^ { - x } \sin 2 x\) has a stationary point when \(x = \frac { 1 } { 2 } \arctan 2\).
This paper
(8 questions)
View full paper
Q1
Q3
Q4
Q5
Q6
Q7
Q8
Q9