OCR MEI C3 (Core Mathematics 3) 2013 January

Question 1
View details
1
  1. Given that \(y = \mathrm { e } ^ { - x } \sin 2 x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Hence show that the curve \(y = \mathrm { e } ^ { - x } \sin 2 x\) has a stationary point when \(x = \frac { 1 } { 2 } \arctan 2\).
Question 3
View details
3 Express \(1 < x < 3\) in the form \(| x - a | < b\), where \(a\) and \(b\) are to be determined.
Question 4
View details
4 The temperature \(\theta ^ { \circ } \mathrm { C }\) of water in a container after \(t\) minutes is modelled by the equation $$\theta = a - b \mathrm { e } ^ { - k t } ,$$ where \(a , b\) and \(k\) are positive constants.
The initial and long-term temperatures of the water are \(15 ^ { \circ } \mathrm { C }\) and \(100 ^ { \circ } \mathrm { C }\) respectively. After 1 minute, the temperature is \(30 ^ { \circ } \mathrm { C }\).
  1. Find \(a , b\) and \(k\).
  2. Find how long it takes for the temperature to reach \(80 ^ { \circ } \mathrm { C }\).
Question 5
View details
5 The driving force \(F\) newtons and velocity \(v \mathrm {~km} \mathrm {~s} ^ { - 1 }\) of a car at time \(t\) seconds are related by the equation \(F = \frac { 25 } { v }\).
  1. Find \(\frac { \mathrm { d } F } { \mathrm {~d} v }\).
  2. Find \(\frac { \mathrm { d } F } { \mathrm {~d} t }\) when \(v = 50\) and \(\frac { \mathrm { d } v } { \mathrm {~d} t } = 1.5\).
Question 6
View details
6 Evaluate \(\int _ { 0 } ^ { 3 } x ( x + 1 ) ^ { - \frac { 1 } { 2 } } \mathrm {~d} x\), giving your answer as an exact fraction.
Question 7
View details
7
  1. Disprove the following statement: $$3 ^ { n } + 2 \text { is prime for all integers } n \geqslant 0 .$$
  2. Prove that no number of the form \(3 ^ { n }\) (where \(n\) is a positive integer) has 5 as its final digit.
Question 8
View details
8 Fig. 8 shows parts of the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\), where \(\mathrm { f } ( x ) = \tan x\) and \(\mathrm { g } ( x ) = 1 + \mathrm { f } \left( x - \frac { 1 } { 4 } \pi \right)\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{aad64998-748a-437a-8a26-6c5715c9366e-3_684_881_404_575} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Describe a sequence of two transformations which maps the curve \(y = \mathrm { f } ( x )\) to the curve \(y = \mathrm { g } ( x )\). It can be shown that \(\mathrm { g } ( x ) = \frac { 2 \sin x } { \sin x + \cos x }\).
  2. Show that \(\mathrm { g } ^ { \prime } ( x ) = \frac { 2 } { ( \sin x + \cos x ) ^ { 2 } }\). Hence verify that the gradient of \(y = \mathrm { g } ( x )\) at the point \(\left( \frac { 1 } { 4 } \pi , 1 \right)\) is the same as that of \(y = \mathrm { f } ( x )\) at the origin.
  3. By writing \(\tan x = \frac { \sin x } { \cos x }\) and using the substitution \(u = \cos x\), show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \mathrm { f } ( x ) \mathrm { d } x = \int _ { \frac { 1 } { \sqrt { 2 } } } ^ { 1 } \frac { 1 } { u } \mathrm {~d} u\). Evaluate this integral exactly.
  4. Hence find the exact area of the region enclosed by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis and the lines \(x = \frac { 1 } { 4 } \pi\) and \(x = \frac { 1 } { 2 } \pi\).
Question 9
View details
9 Fig. 9 shows the line \(y = x\) and the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } - 1 \right)\). The line and the curve intersect at the origin and at the point \(\mathrm { P } ( a , a )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{aad64998-748a-437a-8a26-6c5715c9366e-4_684_880_372_571} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that \(\mathrm { e } ^ { a } = 1 + 2 a\).
  2. Show that the area of the region enclosed by the curve, the \(x\)-axis and the line \(x = a\) is \(\frac { 1 } { 2 } a\). Hence find, in terms of \(a\), the area enclosed by the curve and the line \(y = x\).
  3. Show that the inverse function of \(\mathrm { f } ( x )\) is \(\mathrm { g } ( x )\), where \(\mathrm { g } ( x ) = \ln ( 1 + 2 x )\). Add a sketch of \(y = \mathrm { g } ( x )\) to the copy of Fig. 9.
  4. Find the derivatives of \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\). Hence verify that \(\mathrm { g } ^ { \prime } ( a ) = \frac { 1 } { \mathrm { f } ^ { \prime } ( a ) }\). Give a geometrical interpretation of this result.