OCR C3 (Core Mathematics 3) 2012 June

Question 1
View details
1 Solve the inequality \(| 2 x - 5 | > | x + 1 |\).
Question 2
View details
2 It is given that \(p = \mathrm { e } ^ { 280 }\) and \(q = \mathrm { e } ^ { 300 }\).
  1. Use logarithm properties to show that \(\ln \left( \frac { \mathrm { e } \mathrm { p } ^ { 2 } } { q } \right) = 261\).
  2. Find the smallest integer \(n\) which satisfies the inequality \(5 ^ { n } > p q\).
Question 3
View details
3 It is given that \(\theta\) is the acute angle such that \(\sec \theta \sin \theta = 36 \cot \theta\).
  1. Show that \(\tan \theta = 6\).
  2. Hence, using an appropriate formula in each case, find the exact value of
    (a) \(\tan \left( \theta - 45 ^ { \circ } \right)\),
    (b) \(\quad \tan 2 \theta\).
Question 4
View details
4
  1. Show that \(\int _ { 0 } ^ { 4 } \frac { 18 } { \sqrt { 6 x + 1 } } \mathrm {~d} x = 24\).
  2. Find \(\int _ { 0 } ^ { 1 } \left( \mathrm { e } ^ { x } + 2 \right) ^ { 2 } \mathrm {~d} x\), giving your answer in terms of e .
Question 5
View details
5
  1. It is given that \(k\) is a positive constant. By sketching the graphs of $$y = 14 - x ^ { 2 } \text { and } y = k \ln x$$ on a single diagram, show that the equation $$14 - x ^ { 2 } = k \ln x$$ has exactly one real root.
  2. The real root of the equation \(14 - x ^ { 2 } = 3 \ln x\) is denoted by \(\alpha\).
    (a) Find by calculation the pair of consecutive integers between which \(\alpha\) lies.
    (b) Use the iterative formula \(x _ { n + 1 } = \sqrt { 14 - 3 \ln x _ { n } }\), with a suitable starting value, to find \(\alpha\). Show the result of each iteration, and give \(\alpha\) correct to 2 decimal places.
Question 6
View details
6 The volume, \(V \mathrm {~m} ^ { 3 }\), of liquid in a container is given by $$V = \left( 3 h ^ { 2 } + 4 \right) ^ { \frac { 3 } { 2 } } - 8 ,$$ where \(h \mathrm {~m}\) is the depth of the liquid.
  1. Find the value of \(\frac { \mathrm { d } V } { \mathrm {~d} h }\) when \(h = 0.6\), giving your answer correct to 2 decimal places.
  2. Liquid is leaking from the container. It is observed that, when the depth of the liquid is 0.6 m , the depth is decreasing at a rate of 0.015 m per hour. Find the rate at which the volume of liquid in the container is decreasing at the instant when the depth is 0.6 m .
Question 7
View details
7 The function f is defined for all real values of \(x\) by \(\mathrm { f } ( x ) = 2 x + 5\). The function g is defined for all real values of \(x\) and is such that \(\mathrm { g } ^ { - 1 } ( x ) = \sqrt [ 3 ] { x - a }\), where \(a\) is a constant. It is given that \(\mathrm { fg } ^ { - 1 } ( 12 ) = 9\). Find the value of \(a\) and hence solve the equation \(\operatorname { gf } ( x ) = 68\).
Question 8
View details
8
  1. Express \(3 \sin \theta + 4 \cos \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  2. Hence
    (a) solve the equation \(3 \sin \theta + 4 \cos \theta + 1 = 0\), giving all solutions for which \(- 180 ^ { \circ } < \theta < 180 ^ { \circ }\),
    (b) find the values of the positive constants \(k\) and \(c\) such that $$- 37 \leqslant k ( 3 \sin \theta + 4 \cos \theta ) + c \leqslant 43$$ for all values of \(\theta\).
Question 9
View details
9
  1. Show that the derivative with respect to \(y\) of $$y \ln ( 2 y ) - y$$ is \(\ln ( 2 y )\).

  2. \includegraphics[max width=\textwidth, alt={}, center]{390105da-0cba-4f82-8c8f-1f36090b1564-3_465_631_1859_717} The diagram shows the curve with equation \(y = \frac { 1 } { 2 } \mathrm { e } ^ { x ^ { 2 } }\). The point \(P \left( 2 , \frac { 1 } { 2 } \mathrm { e } ^ { 4 } \right)\) lies on the curve. The shaded region is bounded by the curve and the lines \(x = 0\) and \(y = \frac { 1 } { 2 } e ^ { 4 }\). Find the exact volume of the solid produced when the shaded region is rotated completely about the \(y\)-axis.
  3. Hence find the volume of the solid produced when the region bounded by the curve and the lines \(x = 0\), \(x = 2\) and \(y = 0\) is rotated completely about the \(y\)-axis. \section*{THERE ARE NO QUESTIONS WRITTEN ON THIS PAGE.}