| Exam Board | CAIE |
| Module | P1 (Pure Mathematics 1) |
| Year | 2024 |
| Session | March |
| Topic | Trig Equations |
4
- Prove that \(\frac { ( \sin \theta + \cos \theta ) ^ { 2 } - 1 } { \cos ^ { 2 } \theta } \equiv 2 \tan \theta\).
\includegraphics[max width=\textwidth, alt={}]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_63_1569_333_328} …...........................................................................................................................................
\includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_65_1570_511_324}
\includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_62_1570_603_324}
\includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_72_1570_685_324}
\includegraphics[max width=\textwidth, alt={}]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_72_1570_776_324} ...................................................................................................................................... .
\includegraphics[max width=\textwidth, alt={}]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_76_1572_952_322} ........................................................................................................................................
\includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_72_1570_1137_324}
\includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_74_1572_1226_322}
\includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_77_1575_1315_319} - Hence solve the equation \(\frac { ( \sin \theta + \cos \theta ) ^ { 2 } - 1 } { \cos ^ { 2 } \theta } = 5 \tan ^ { 3 } \theta\) for \(- 90 ^ { \circ } < \theta < 90 ^ { \circ }\).