CAIE P1 (Pure Mathematics 1) 2024 March

Question 1
View details
1 Find the exact value of \(\int _ { 3 } ^ { \infty } \frac { 2 } { x ^ { 2 } } d x\).
Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-03_451_597_255_735} The diagram shows part of the curve with equation \(\mathrm { y } = \mathrm { ksin } \frac { 1 } { 2 } \mathrm { x }\), where \(k\) is a positive constant and \(x\) is measured in radians. The curve has a minimum point \(A\).
  1. State the coordinates of \(A\).
  2. A sequence of transformations is applied to the curve in the following order. Translation of 2 units in the negative \(y\)-direction
    Reflection in the \(x\)-axis
    Find the equation of the new curve and determine the coordinates of the point on the new curve corresponding to \(A\).
Question 3
View details
3 A curve is such that \(\frac { \mathrm { dy } } { \mathrm { dx } } = 3 ( 4 \mathrm { x } + 5 ) ^ { \frac { 1 } { 2 } }\). It is given that the points \(( 1,9 )\) and \(( 5 , a )\) lie on the curve. Find the value of \(a\).
Question 4
View details
4
  1. Prove that \(\frac { ( \sin \theta + \cos \theta ) ^ { 2 } - 1 } { \cos ^ { 2 } \theta } \equiv 2 \tan \theta\).
    \includegraphics[max width=\textwidth, alt={}]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_63_1569_333_328} …...........................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_65_1570_511_324}
    \includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_62_1570_603_324}
    \includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_72_1570_685_324}
    \includegraphics[max width=\textwidth, alt={}]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_72_1570_776_324} ...................................................................................................................................... .
    \includegraphics[max width=\textwidth, alt={}]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_76_1572_952_322} ........................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_72_1570_1137_324}
    \includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_74_1572_1226_322}
    \includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-05_77_1575_1315_319}
  2. Hence solve the equation \(\frac { ( \sin \theta + \cos \theta ) ^ { 2 } - 1 } { \cos ^ { 2 } \theta } = 5 \tan ^ { 3 } \theta\) for \(- 90 ^ { \circ } < \theta < 90 ^ { \circ }\).
Question 5
View details
5 A curve has the equation \(\mathrm { y } = \frac { 3 } { 2 \mathrm { x } ^ { 2 } - 5 }\).
Find the equation of the normal to the curve at the point \(( 2,1 )\), giving your answer in the form \(\mathrm { ax } + \mathrm { by } + \mathrm { c } = 0\), where \(a , b\) and \(c\) are integers.
Question 6
View details
6 It is given that the coefficient of \(x ^ { 3 }\) in the expansion of $$( 2 + a x ) ^ { 4 } ( 5 - a x )$$ is 432 .
Find the value of the constant \(a\).
Question 7
View details
7 The straight line \(\mathrm { y } = \mathrm { x } + 5\) meets the curve \(2 \mathrm { x } ^ { 2 } + 3 \mathrm { y } ^ { 2 } = \mathrm { k }\) at a single point \(P\).
  1. Find the value of the constant \(k\).
  2. Find the coordinates of \(P\).
Question 8
View details
8
  1. An arithmetic progression is such that its first term is 6 and its tenth term is 19.5 .
    Find the sum of the first 100 terms of this arithmetic progression.
  2. A geometric progression \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that \(a _ { 1 } = 24\) and the common ratio is \(\frac { 1 } { 2 }\). The sum to infinity of this geometric progression is denoted by \(S\). The sum to infinity of the even-numbered terms (i.e. \(a _ { 2 } , a _ { 4 } , a _ { 6 } , \ldots\) ) is denoted by \(S _ { E }\). Find the values of \(S\) and \(S _ { E }\).
Question 9
View details
9 The functions f and g are defined for all real values of \(x\) by $$f ( x ) = ( 3 x - 2 ) ^ { 2 } + k \quad \text { and } \quad g ( x ) = 5 x - 1$$ where \(k\) is a constant.
  1. Given that the range of the function gf is \(\mathrm { gf } ( x ) \geqslant 39\), find the value of \(k\).
  2. For this value of \(k\), determine the range of the function fg .
  3. The function h is defined for all real values of \(x\) and is such that \(\mathrm { gh } ( x ) = 35 x + 19\). Find an expression for \(\mathrm { g } ^ { - 1 } ( x )\) and hence, or otherwise, find an expression for \(\mathrm { h } ( x )\).
    \includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-12_739_625_260_721} The diagram shows the circle with centre \(C ( - 4,5 )\) and radius \(\sqrt { 20 }\) units. The circle intersects the \(y\)-axis at the points \(A\) and \(B\). The size of angle \(A C B\) is \(\theta\) radians.
Question 10
View details
  1. Find the equation of the tangent to the circle at the point \(( - 6,9 )\).
  2. Find the equation of the circle in the form \(x ^ { 2 } + y ^ { 2 } + a x + b y + c = 0\).
  3. Find the value of \(\theta\) correct to 4 significant figures.
  4. Find the perimeter and area of the segment shaded in the diagram.
Question 11
View details
11
\includegraphics[max width=\textwidth, alt={}, center]{b5eb378d-a9cb-40e0-9203-374b58f1dcf9-14_467_757_262_653} The diagram shows the curve with equation \(\mathrm { y } = 2 \mathrm { x } ^ { - \frac { 2 } { 3 } } - 3 \mathrm { x } ^ { - \frac { 1 } { 3 } } + 1\) for \(x > 0\). The curve crosses the \(x\)-axis at points \(A\) and \(B\) and has a minimum point \(M\).
  1. Find the exact coordinates of \(M\).
  2. Find the area of the region bounded by the curve and the line segment \(A B\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.