A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Hyperbolic functions
Q4
OCR MEI FP2 2011 June — Question 4
Exam Board
OCR MEI
Module
FP2 (Further Pure Mathematics 2)
Year
2011
Session
June
Topic
Hyperbolic functions
4
Given that \(\cosh y = x\), show that \(y = \pm \ln \left( x + \sqrt { x ^ { 2 } - 1 } \right)\) and that \(\operatorname { arcosh } x = \ln \left( x + \sqrt { x ^ { 2 } - 1 } \right)\).
Find \(\int _ { \frac { 4 } { 5 } } ^ { 1 } \frac { 1 } { \sqrt { 25 x ^ { 2 } - 16 } } \mathrm {~d} x\), expressing your answer in an exact logarithmic form.
Solve the equation $$5 \cosh x - \cosh 2 x = 3$$ giving your answers in an exact logarithmic form.
This paper
(5 questions)
View full paper
Q1
Q2
Q3
Q4
Q5