Edexcel FP2 2008 June — Question 7

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2008
SessionJune
TopicFirst order differential equations (integrating factor)

7. (a) Show that the substitution \(y = v x\) transforms the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x } { y } + \frac { 3 y } { x } , \quad x > 0 , \quad y > 0$$ into the differential equation $$x \frac { \mathrm {~d} v } { \mathrm {~d} x } = 2 v + \frac { 1 } { v } .$$ (b) By solving differential equation (II), find a general solution of differential equation (I) in the form \(y = \mathrm { f } ( x )\). Given that \(y = 3\) at \(x = 1\),
(c)find the particular solution of differential equation (I).(2)