OCR MEI FP2 2013 June — Question 3

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2013
SessionJune
Topic3x3 Matrices

3 You are given the matrix \(\mathbf { A } = \left( \begin{array} { r r r } k & - 7 & 4
2 & - 2 & 3
1 & - 3 & - 2 \end{array} \right)\).
  1. Show that when \(k = 5\) the determinant of \(\mathbf { A }\) is zero. Obtain an expression for the inverse of \(\mathbf { A }\) when \(k \neq 5\).
  2. Solve the matrix equation $$\left( \begin{array} { r r r } 4 & - 7 & 4
    2 & - 2 & 3
    1 & - 3 & - 2 \end{array} \right) \left( \begin{array} { l } x
    y
    z \end{array} \right) = \left( \begin{array} { c } p
    1
    2 \end{array} \right)$$ giving your answer in terms of \(p\).
  3. Find the value of \(p\) for which the matrix equation $$\left( \begin{array} { r r r } 5 & - 7 & 4
    2 & - 2 & 3
    1 & - 3 & - 2 \end{array} \right) \left( \begin{array} { c } x
    y
    z \end{array} \right) = \left( \begin{array} { c } p
    1
    2 \end{array} \right)$$ has a solution. Give the general solution in this case and describe it geometrically.
This paper (2 questions)
View full paper