3 You are given the matrix \(\mathbf { A } = \left( \begin{array} { r r r } k & - 7 & 4
2 & - 2 & 3
1 & - 3 & - 2 \end{array} \right)\).
- Show that when \(k = 5\) the determinant of \(\mathbf { A }\) is zero. Obtain an expression for the inverse of \(\mathbf { A }\) when \(k \neq 5\).
- Solve the matrix equation
$$\left( \begin{array} { r r r }
4 & - 7 & 4
2 & - 2 & 3
1 & - 3 & - 2
\end{array} \right) \left( \begin{array} { l }
x
y
z
\end{array} \right) = \left( \begin{array} { c }
p
1
2
\end{array} \right)$$
giving your answer in terms of \(p\). - Find the value of \(p\) for which the matrix equation
$$\left( \begin{array} { r r r }
5 & - 7 & 4
2 & - 2 & 3
1 & - 3 & - 2
\end{array} \right) \left( \begin{array} { c }
x
y
z
\end{array} \right) = \left( \begin{array} { c }
p
1
2
\end{array} \right)$$
has a solution. Give the general solution in this case and describe it geometrically.