OCR MEI FP2 2012 June — Question 4

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2012
SessionJune
TopicHyperbolic functions

4
  1. Prove, from definitions involving exponential functions, that $$\cosh 2 u = 2 \sinh ^ { 2 } u + 1$$
  2. Prove that, if \(y \geqslant 0\) and \(\cosh y = u\), then \(y = \ln \left( u + \sqrt { } \left( u ^ { 2 } - 1 \right) \right)\).
  3. Using the substitution \(2 x = \cosh u\), show that $$\int \sqrt { 4 x ^ { 2 } - 1 } \mathrm {~d} x = a x \sqrt { 4 x ^ { 2 } - 1 } - b \operatorname { arcosh } 2 x + c$$ where \(a\) and \(b\) are constants to be determined and \(c\) is an arbitrary constant.
  4. Find \(\int _ { \frac { 1 } { 2 } } ^ { 1 } \sqrt { 4 x ^ { 2 } - 1 } \mathrm {~d} x\), expressing your answer in an exact form involving logarithms.