OCR MEI FP2 2012 June — Question 1

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2012
SessionJune
TopicIntegration using inverse trig and hyperbolic functions

1
    1. Differentiate the equation \(\sin y = x\) with respect to \(x\), and hence show that the derivative of \(\arcsin x\) is \(\frac { 1 } { \sqrt { 1 - x ^ { 2 } } }\).
    2. Evaluate the following integrals, giving your answers in exact form.
      (A) \(\int _ { - 1 } ^ { 1 } \frac { 1 } { \sqrt { 2 - x ^ { 2 } } } \mathrm {~d} x\)
      (B) \(\int _ { - \frac { 1 } { 2 } } ^ { \frac { 1 } { 2 } } \frac { 1 } { \sqrt { 1 - 2 x ^ { 2 } } } \mathrm {~d} x\)
  1. A curve has polar equation \(r = \tan \theta , 0 \leqslant \theta < \frac { 1 } { 2 } \pi\). The points on the curve have cartesian coordinates \(( x , y )\). A sketch of the curve is given in Fig. 1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{99f0c663-bb5b-4456-854c-df177f5d8349-2_493_796_1123_605} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} Show that \(x = \sin \theta\) and that \(r ^ { 2 } = \frac { x ^ { 2 } } { 1 - x ^ { 2 } }\).
    Hence show that the cartesian equation of the curve is $$y = \frac { x ^ { 2 } } { \sqrt { 1 - x ^ { 2 } } } .$$ Give the cartesian equation of the asymptote of the curve.