OCR MEI FP2 2010 January — Question 4

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2010
SessionJanuary
TopicHyperbolic functions

4
  1. Prove, using exponential functions, that $$\cosh 2 x = 1 + 2 \sinh ^ { 2 } x$$ Differentiate this result to obtain a formula for \(\sinh 2 x\).
  2. Solve the equation $$2 \cosh 2 x + 3 \sinh x = 3$$ expressing your answers in exact logarithmic form.
  3. Given that \(\cosh t = \frac { 5 } { 4 }\), show by using exponential functions that \(t = \pm \ln 2\). Find the exact value of the integral $$\int _ { 4 } ^ { 5 } \frac { 1 } { \sqrt { x ^ { 2 } - 16 } } \mathrm {~d} x$$