4 The group \(G = \{ 1,2,3,4,5,6 \}\) has multiplication modulo 7 as its operation. The group \(H = \{ 1,5,7,11,13,17 \}\) has multiplication modulo 18 as its operation.
- Show that the groups \(G\) and \(H\) are both cyclic.
- List all the proper subgroups of \(G\).
- Specify an isomorphism between \(G\) and \(H\).
The group \(S = \{ \mathrm { a } , \mathrm { b } , \mathrm { c } , \mathrm { d } , \mathrm { e } , \mathrm { f } \}\) consists of functions with domain \(\{ 1,2,3 \}\) given by
$$\begin{array} { l l l }
\mathrm { a } ( 1 ) = 2 & \mathrm { a } ( 2 ) = 3 & \mathrm { a } ( 3 ) = 1
\mathrm {~b} ( 1 ) = 3 & \mathrm {~b} ( 2 ) = 1 & \mathrm {~b} ( 3 ) = 2
\mathrm { c } ( 1 ) = 1 & \mathrm { c } ( 2 ) = 3 & \mathrm { c } ( 3 ) = 2
\mathrm {~d} ( 1 ) = 3 & \mathrm {~d} ( 2 ) = 2 & \mathrm {~d} ( 3 ) = 1
\mathrm { e } ( 1 ) = 1 & \mathrm { e } ( 2 ) = 2 & \mathrm { e } ( 3 ) = 3
\mathrm { f } ( 1 ) = 2 & \mathrm { f } ( 2 ) = 1 & \mathrm { f } ( 3 ) = 3
\end{array}$$
and the group operation is composition of functions. - Show that ad \(= \mathrm { c }\) and find da.
- Give a reason why \(S\) is not isomorphic to \(G\).
- Find the order of each element of \(S\).
- List all the proper subgroups of \(S\).