OCR MEI FP3 (Further Pure Mathematics 3) 2009 June

Question 1
View details
1 The point \(\mathrm { A } ( - 1,12,5 )\) lies on the plane \(P\) with equation \(8 x - 3 y + 10 z = 6\). The point \(\mathrm { B } ( 6 , - 2,9 )\) lies on the plane \(Q\) with equation \(3 x - 4 y - 2 z = 8\). The planes \(P\) and \(Q\) intersect in the line \(L\).
  1. Find an equation for the line \(L\).
  2. Find the shortest distance between \(L\) and the line AB . The lines \(M\) and \(N\) are both parallel to \(L\), with \(M\) passing through A and \(N\) passing through B .
  3. Find the distance between the parallel lines \(M\) and \(N\). The point C has coordinates \(( k , 0,2 )\), and the line AC intersects the line \(N\) at the point D .
  4. Find the value of \(k\), and the coordinates of D .
Question 2
View details
2 A surface has equation \(z = 3 x ( x + y ) ^ { 3 } - 2 x ^ { 3 } + 24 x\).
  1. Find \(\frac { \partial z } { \partial x }\) and \(\frac { \partial z } { \partial y }\).
  2. Find the coordinates of the three stationary points on the surface.
  3. Find the equation of the normal line at the point \(\mathrm { P } ( 1 , - 2,19 )\) on the surface.
  4. The point \(\mathrm { Q } ( 1 + k , - 2 + h , 19 + 3 h )\) is on the surface and is close to P . Find an approximate expression for \(k\) in terms of \(h\).
  5. Show that there is only one point on the surface at which the tangent plane has an equation of the form \(27 x - z = d\). Find the coordinates of this point and the corresponding value of \(d\).
Question 3
View details
3 A curve has parametric equations \(x = a ( \theta + \sin \theta ) , y = a ( 1 - \cos \theta )\), for \(0 \leqslant \theta \leqslant \pi\), where \(a\) is a positive constant.
  1. Show that the arc length \(s\) from the origin to a general point on the curve is given by \(s = 4 a \sin \frac { 1 } { 2 } \theta\).
  2. Find the intrinsic equation of the curve giving \(s\) in terms of \(a\) and \(\psi\), where \(\tan \psi = \frac { \mathrm { d } y } { \mathrm {~d} x }\).
  3. Hence, or otherwise, show that the radius of curvature at a point on the curve is \(4 a \cos \frac { 1 } { 2 } \theta\).
  4. Find the coordinates of the centre of curvature corresponding to the point on the curve where \(\theta = \frac { 2 } { 3 } \pi\).
  5. Find the area of the surface generated when the curve is rotated through \(2 \pi\) radians about the \(x\)-axis.
Question 4
View details
4 The group \(G = \{ 1,2,3,4,5,6 \}\) has multiplication modulo 7 as its operation. The group \(H = \{ 1,5,7,11,13,17 \}\) has multiplication modulo 18 as its operation.
  1. Show that the groups \(G\) and \(H\) are both cyclic.
  2. List all the proper subgroups of \(G\).
  3. Specify an isomorphism between \(G\) and \(H\). The group \(S = \{ \mathrm { a } , \mathrm { b } , \mathrm { c } , \mathrm { d } , \mathrm { e } , \mathrm { f } \}\) consists of functions with domain \(\{ 1,2,3 \}\) given by $$\begin{array} { l l l } \mathrm { a } ( 1 ) = 2 & \mathrm { a } ( 2 ) = 3 & \mathrm { a } ( 3 ) = 1
    \mathrm {~b} ( 1 ) = 3 & \mathrm {~b} ( 2 ) = 1 & \mathrm {~b} ( 3 ) = 2
    \mathrm { c } ( 1 ) = 1 & \mathrm { c } ( 2 ) = 3 & \mathrm { c } ( 3 ) = 2
    \mathrm {~d} ( 1 ) = 3 & \mathrm {~d} ( 2 ) = 2 & \mathrm {~d} ( 3 ) = 1
    \mathrm { e } ( 1 ) = 1 & \mathrm { e } ( 2 ) = 2 & \mathrm { e } ( 3 ) = 3
    \mathrm { f } ( 1 ) = 2 & \mathrm { f } ( 2 ) = 1 & \mathrm { f } ( 3 ) = 3 \end{array}$$ and the group operation is composition of functions.
  4. Show that ad \(= \mathrm { c }\) and find da.
  5. Give a reason why \(S\) is not isomorphic to \(G\).
  6. Find the order of each element of \(S\).
  7. List all the proper subgroups of \(S\).
Question 5
View details
5 Each level of a fantasy computer game is set in a single location, Alphaworld, Betaworld, Chiworld or Deltaworld. After completing a level, a player goes on to the next level, which could be set in the same location as the previous level, or in a different location. In the first version of the game, the initial and transition probabilities are as follows.
Level 1 is set in Alphaworld or Betaworld, with probabilities 0.6, 0.4 respectively.
After a level set in Alphaworld, the next level will be set in Betaworld, Chiworld or Deltaworld, with probabilities \(0.7,0.1,0.2\) respectively.
After a level set in Betaworld, the next level will be set in Alphaworld, Betaworld or Deltaworld, with probabilities \(0.1,0.8,0.1\) respectively.
After a level set in Chiworld, the next level will also be set in Chiworld.
After a level set in Deltaworld, the next level will be set in Alphaworld, Betaworld or Chiworld, with probabilities \(0.3,0.6,0.1\) respectively. The situation is modelled as a Markov chain with four states.
  1. Write down the transition matrix.
  2. Find the probabilities that level 14 is set in each location.
  3. Find the probability that level 15 is set in the same location as level 14 .
  4. Find the level at which the probability of being set in Chiworld first exceeds 0.5.
  5. Following a level set in Betaworld, find the expected number of further levels which will be set in Betaworld before changing to a different location. In the second version of the game, the initial probabilities and the transition probabilities after Alphaworld, Betaworld and Deltaworld are all the same as in the first version; but after a level set in Chiworld, the next level will be set in Chiworld or Deltaworld, with probabilities \(0.9,0.1\) respectively.
  6. By considering powers of the new transition matrix, or otherwise, find the equilibrium probabilities for the four locations. In the third version of the game, the initial probabilities and the transition probabilities after Alphaworld, Betaworld and Deltaworld are again all the same as in the first version; but the transition probabilities after Chiworld have changed again. The equilibrium probabilities for Alphaworld, Betaworld, Chiworld and Deltaworld are now 0.11, 0.75, 0.04, 0.1 respectively.
  7. Find the new transition probabilities after a level set in Chiworld. OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (\href{http://www.ocr.org.uk}{www.ocr.org.uk}) after the live examination series.
    If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1PB.
    OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.