By considering the derivatives of \(\cos x\), show that the Maclaurin expansion of \(\cos x\) begins
$$1 - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 24 } x ^ { 4 }$$
The Maclaurin expansion of \(\sec x\) begins
$$1 + a x ^ { 2 } + b x ^ { 4 }$$
where \(a\) and \(b\) are constants. Explain why, for sufficiently small \(x\),
$$\left( 1 - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 24 } x ^ { 4 } \right) \left( 1 + a x ^ { 2 } + b x ^ { 4 } \right) \approx 1$$
Hence find the values of \(a\) and \(b\).
Given that \(y = \arctan \left( \frac { x } { a } \right)\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { a } { a ^ { 2 } + x ^ { 2 } }\).