OCR MEI FP2 2009 January — Question 1

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2009
SessionJanuary
TopicTaylor series
TypeSeries for reciprocal functions

1
    1. By considering the derivatives of \(\cos x\), show that the Maclaurin expansion of \(\cos x\) begins $$1 - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 24 } x ^ { 4 }$$
    2. The Maclaurin expansion of \(\sec x\) begins $$1 + a x ^ { 2 } + b x ^ { 4 }$$ where \(a\) and \(b\) are constants. Explain why, for sufficiently small \(x\), $$\left( 1 - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 24 } x ^ { 4 } \right) \left( 1 + a x ^ { 2 } + b x ^ { 4 } \right) \approx 1$$ Hence find the values of \(a\) and \(b\).
    1. Given that \(y = \arctan \left( \frac { x } { a } \right)\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { a } { a ^ { 2 } + x ^ { 2 } }\).
    2. Find the exact values of the following integrals. $$\begin{aligned} & \text { (A) } \int _ { - 2 } ^ { 2 } \frac { 1 } { 4 + x ^ { 2 } } \mathrm {~d} x
      & \text { (B) } \int _ { - \frac { 1 } { 2 } } ^ { \frac { 1 } { 2 } } \frac { 4 } { 1 + 4 x ^ { 2 } } \mathrm {~d} x \end{aligned}$$