Series for reciprocal functions

Questions that require finding the series for 1/f(x) by multiplying the reciprocal series with the original series to get 1 (e.g., sec x from cos x).

2 questions

OCR MEI FP2 2009 January Q1
1
    1. By considering the derivatives of \(\cos x\), show that the Maclaurin expansion of \(\cos x\) begins $$1 - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 24 } x ^ { 4 }$$
    2. The Maclaurin expansion of \(\sec x\) begins $$1 + a x ^ { 2 } + b x ^ { 4 }$$ where \(a\) and \(b\) are constants. Explain why, for sufficiently small \(x\), $$\left( 1 - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 24 } x ^ { 4 } \right) \left( 1 + a x ^ { 2 } + b x ^ { 4 } \right) \approx 1$$ Hence find the values of \(a\) and \(b\).
    1. Given that \(y = \arctan \left( \frac { x } { a } \right)\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { a } { a ^ { 2 } + x ^ { 2 } }\).
    2. Find the exact values of the following integrals. $$\begin{aligned} & \text { (A) } \int _ { - 2 } ^ { 2 } \frac { 1 } { 4 + x ^ { 2 } } \mathrm {~d} x
      & \text { (B) } \int _ { - \frac { 1 } { 2 } } ^ { \frac { 1 } { 2 } } \frac { 4 } { 1 + 4 x ^ { 2 } } \mathrm {~d} x \end{aligned}$$
AQA FP3 2006 June Q7
7
    1. Write down the first three terms of the binomial expansion of \(( 1 + y ) ^ { - 1 }\), in ascending powers of \(y\).
    2. By using the expansion $$\cos x = 1 - \frac { x ^ { 2 } } { 2 ! } + \frac { x ^ { 4 } } { 4 ! } - \ldots$$ and your answer to part (a)(i), or otherwise, show that the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\sec x\) are $$1 + \frac { x ^ { 2 } } { 2 } + \frac { 5 x ^ { 4 } } { 24 }$$
  1. By using Maclaurin's theorem, or otherwise, show that the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\tan x\) are $$x + \frac { x ^ { 3 } } { 3 }$$
  2. Hence find \(\lim _ { x \rightarrow 0 } \left( \frac { x \tan 2 x } { \sec x - 1 } \right)\).