OCR S4 2016 June — Question 6

Exam BoardOCR
ModuleS4 (Statistics 4)
Year2016
SessionJune
TopicProbability Generating Functions
TypeMultiple independent coins/dice

6 Andrew has five coins. Three of them are unbiased. The other two are biased such that the probability of obtaining a head when one of them is tossed is \(\frac { 3 } { 5 }\). Andrew tosses all five coins. It is given that the probability generating function of \(X\), the number of heads obtained on the unbiased coins, is \(\mathrm { G } _ { X } ( t )\), where $$\mathrm { G } _ { X } ( t ) = \frac { 1 } { 8 } + \frac { 3 } { 8 } t + \frac { 3 } { 8 } t ^ { 2 } + \frac { 1 } { 8 } t ^ { 3 }$$
  1. Find \(G _ { Y } ( \mathrm { t } )\), the probability generating function of \(Y\), the number of heads on the biased coins.
  2. The random variable \(Z\) is the total number of heads obtained when Andrew tosses all five coins. Find the probability generating function of \(Z\), giving your answer as a polynomial.
  3. Find \(\mathrm { E } ( Z )\) and \(\operatorname { Var } ( Z )\).
  4. Write down the value of \(\mathrm { P } ( Z = 3 )\).