OCR S3 2014 June — Question 9

Exam BoardOCR
ModuleS3 (Statistics 3)
Year2014
SessionJune
TopicContinuous Probability Distributions and Random Variables
TypeComposite/applied transformation

9 A rectangle of area \(A \mathrm {~m} ^ { 2 }\) has a perimeter of 20 m and each of the two shorter sides are of length \(X \mathrm {~m}\), where \(X\) is uniformly distributed between 0 and 2 .
  1. Write down an expression for \(A\) in terms of \(X\), and hence show that \(A = 25 - ( X - 5 ) ^ { 2 }\).
  2. Write down the probability density function of \(X\).
  3. Show that the cumulative distribution function of \(A\) is $$\mathrm { F } ( a ) = \left\{ \begin{array} { l r } 0 & a < 0 ,
    \frac { 1 } { 2 } ( 5 - \sqrt { 25 - a } ) & 0 \leqslant a \leqslant 16 ,
    1 & a > 16 . \end{array} \right.$$
  4. Find the probability density function of \(A\). \section*{END OF QUESTION PAPER} \section*{\(\mathrm { OCR } ^ { \text {勾 } }\)}