OCR S2 2013 January — Question 7

Exam BoardOCR
ModuleS2 (Statistics 2)
Year2013
SessionJanuary
TopicCentral limit theorem
TypeFinding n from sample mean distribution

7 The continuous random variable \(X\) has the distribution \(\mathrm { N } \left( \mu , \sigma ^ { 2 } \right)\). The mean of a random sample of \(n\) observations of \(X\) is denoted by \(\bar { X }\). It is given that \(\mathrm { P } ( \bar { X } < 35.0 ) = 0.9772\) and \(\mathrm { P } ( \bar { X } < 20.0 ) = 0.1587\).
  1. Obtain a formula for \(\sigma\) in terms of \(n\). Two students are discussing this question. Aidan says "If you were told another probability, for instance \(\mathrm { P } ( \bar { X } > 32 ) = 0.1\), you could work out the value of \(\sigma\)." Binya says, "No, the value of \(\mathrm { P } ( \bar { X } > 32 )\) is fixed by the information you know already."
  2. State which of Aidan and Binya is right. If you think that Aidan is right, calculate the value of \(\sigma\) given that \(\mathrm { P } ( \bar { X } > 32 ) = 0.1\). If you think that Binya is right, calculate the value of \(\mathrm { P } ( \bar { X } > 32 )\).