7 The continuous random variable \(X\) has the distribution \(\mathrm { N } \left( \mu , \sigma ^ { 2 } \right)\). The mean of a random sample of \(n\) observations of \(X\) is denoted by \(\bar { X }\). It is given that \(\mathrm { P } ( \bar { X } < 35.0 ) = 0.9772\) and \(\mathrm { P } ( \bar { X } < 20.0 ) = 0.1587\).
- Obtain a formula for \(\sigma\) in terms of \(n\).
Two students are discussing this question. Aidan says "If you were told another probability, for instance \(\mathrm { P } ( \bar { X } > 32 ) = 0.1\), you could work out the value of \(\sigma\)." Binya says, "No, the value of \(\mathrm { P } ( \bar { X } > 32 )\) is fixed by the information you know already."
- State which of Aidan and Binya is right. If you think that Aidan is right, calculate the value of \(\sigma\) given that \(\mathrm { P } ( \bar { X } > 32 ) = 0.1\). If you think that Binya is right, calculate the value of \(\mathrm { P } ( \bar { X } > 32 )\).