6.
\includegraphics[max width=\textwidth, alt={}, center]{0214eebf-93f2-4338-9222-443000115225-4_346_1040_303_548}
\section*{Figure 1}
Figure 1 shows a sketch of the curve \(C _ { 1 }\) with equation
$$y = \cos ( \cos x ) \sin x \quad \text { for } \quad 0 \leqslant x \leqslant \pi$$
(a)Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
(b)Hence verify that the turning point is at \(x = \frac { \pi } { 2 }\) and find the \(y\) coordinate of this point.
(c)Find the area of the region bounded by \(C _ { 1 }\) and the positive \(x\)-axis between \(x = 0\) and \(x = \pi\)
Figure 2 shows a sketch of the curve \(C _ { 1 }\) and the curve \(C _ { 2 }\) with equation
$$y = \sin ( \cos x ) \sin x \quad \text { for } \quad 0 \leqslant x \leqslant \pi$$
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0214eebf-93f2-4338-9222-443000115225-4_519_1065_1631_484}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
The curves \(C _ { 1 }\) and \(C _ { 2 }\) intersect at the origin and the point \(A ( a , b )\) ,where \(a < \pi\)
(d)Find \(a\) and \(b\) ,giving \(b\) in a form not involving trigonometric functions.
(e)Find the area of the shaded region between \(C _ { 1 }\) and \(C _ { 2 }\)