Edexcel AEA (Advanced Extension Award) 2009 June

Question 1
View details
  1. (a) On the same diagram, sketch
$$y = ( x + 1 ) ( 2 - x ) \quad \text { and } \quad y = x ^ { 2 } - 2 | x |$$ Mark clearly the coordinates of the points where these curves cross the coordinate axes.
(b) Find the \(x\)-coordinates of the points of intersection of these two curves.
Question 2
View details
2. The curve \(C\) has equation \(y = x ^ { \sin x } , \quad x > 0\).
  1. Find the equation of the tangent to \(C\) at the point where \(x = \frac { \pi } { 2 }\).
  2. Prove that this tangent touches \(C\) at infinitely many points.
Question 3
View details
3. (a) Solve, for \(0 \leqslant \theta < 2 \pi\), $$\sin \left( \frac { \pi } { 3 } - \theta \right) = \frac { 1 } { \sqrt { } 3 } \cos \theta$$ (b) Find the value of \(x\) for which $$\begin{aligned} & \arcsin ( 1 - 2 x ) = \frac { \pi } { 3 } - \arcsin x , \quad 0 < x < 0.5
& { \left[ \arcsin x \text { is an alternative notation for } \sin ^ { - 1 } x \right] } \end{aligned}$$
Question 4
View details
  1. (a) The function \(\mathrm { f } ( x )\) has \(\mathrm { f } ^ { \prime } ( x ) = \frac { \mathrm { u } ( x ) } { \mathrm { v } ( x ) }\). Given that \(\mathrm { f } ^ { \prime } ( k ) = 0\), show that \(\mathrm { f } ^ { \prime \prime } ( k ) = \frac { \mathrm { u } ^ { \prime } ( k ) } { \mathrm { v } ( k ) }\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{dfb57dc0-5831-4bbb-b1e5-58c4798215cb-3_874_879_486_593} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} (b) The curve \(C\) with equation $$y = \frac { 2 x ^ { 2 } + 3 } { x ^ { 2 } - 1 }$$ crosses the \(y\)-axis at the point \(A\). Figure 1 shows a sketch of \(C\) together with its 3 asymptotes.
  1. Find the coordinates of the point \(A\).
  2. Find the equations of the asymptotes of \(C\). The point \(P ( a , b ) , a > 0\) and \(b > 0\), lies on \(C\). The point \(Q\) also lies on \(C\) with \(P Q\) parallel to the \(x\)-axis and \(A P = A Q\).
  3. Show that the area of triangle \(P A Q\) is given by \(\frac { 5 a ^ { 3 } } { a ^ { 2 } - 1 }\).
  4. Find, as \(a\) varies, the minimum area of triangle \(P A Q\), giving your answer in its simplest form.
Question 5
View details
5.(a)The sides of the triangle \(A B C\) have lengths \(B C = a , A C = b\) and \(A B = c\) ,where \(a < b < c\) .The sizes of the angles \(A , B\) and \(C\) form an arithmetic sequence.
(i)Show that the area of triangle \(A B C\) is \(a c \frac { \sqrt { 3 } } { 4 }\) . Given that \(a = 2\) and \(\sin A = \frac { \sqrt { } 15 } { 5 }\) ,find
(ii)the value of \(b\) ,
(iii)the value of \(c\) .
(b)The internal angles of an \(n\)-sided polygon form an arithmetic sequence with first term \(143 ^ { \circ }\) and common difference \(2 ^ { \circ }\) . Given that all of the internal angles are less than \(180 ^ { \circ }\) ,find the value of \(n\) .
Question 6
View details
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{dfb57dc0-5831-4bbb-b1e5-58c4798215cb-5_700_684_246_694} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve \(C\) with parametric equations $$x = 2 \sin t , \quad y = \ln ( \sec t ) , \quad 0 \leqslant t < \frac { \pi } { 2 }$$ The tangent to \(C\) at the point \(P\) ,where \(t = \frac { \pi } { 3 }\) ,cuts the \(x\)-axis at \(A\) .
(a)Show that the \(x\)-coordinate of \(A\) is \(\frac { \sqrt { } 3 } { 3 } ( 3 - \ln 2 )\) . The shaded region \(R\) lies between \(C\) ,the positive \(x\)-axis and the tangent \(A P\) as shown in Figure 2 .
(b)Show that the area of \(R\) is \(\sqrt { 3 } ( 1 + \ln 2 ) - 2 \ln ( 2 + \sqrt { 3 } ) - \frac { \sqrt { 3 } } { 6 } ( \ln 2 ) ^ { 2 }\) .
Question 7
View details
7.Relative to a fixed origin \(O\) the points \(A , B\) and \(C\) have position vectors $$\mathbf { a } = - \mathbf { i } + \frac { 4 } { 3 } \mathbf { j } + 7 \mathbf { k } , \quad \mathbf { b } = 4 \mathbf { i } + \frac { 4 } { 3 } \mathbf { j } + 2 \mathbf { k } \text { and } \mathbf { c } = 6 \mathbf { i } + \frac { 16 } { 3 } \mathbf { j } + 2 \mathbf { k } \text { respectively. }$$ (a)Find the cosine of angle \(A B C\) . The quadrilateral \(A B C D\) is a kite \(K\) .
(b)Find the area of \(K\) . A circle is drawn inside \(K\) so that it touches each of the 4 sides of \(K\) .
(c)Find the radius of the circle,giving your answer in the form \(p \sqrt { } ( q ) - q \sqrt { } ( p )\) ,where \(p\) and \(q\) are positive integers.
(d)Find the position vector of the point \(D\) .
(Total 18 marks)