Edexcel AEA (Advanced Extension Award) 2006 June

Question 1
View details
1.(a)For \(| y | < 1\) ,write down the binomial series expansion of \(( 1 - y ) ^ { - 2 }\) in ascending powers of \(y\) up to and including the term in \(y ^ { 3 }\) .
(b)Hence,or otherwise,show that $$1 + \frac { 2 x } { 1 + x } + \frac { 3 x ^ { 2 } } { ( 1 + x ) ^ { 2 } } + \ldots + \frac { r x ^ { r - 1 } } { ( 1 + x ) ^ { r - 1 } } + \ldots$$ can be written in the form \(( a + x ) ^ { n }\) .Write down the values of the integers \(a\) and \(n\) .
(c)Find the set of values of \(x\) for which the series in part(b)is convergent.
Question 2
View details
2.Given that \(( \sin \theta + \cos \theta ) \neq 0\) ,find all the solutions of $$\frac { 2 \cos 2 \theta ( \sin 2 \theta - \sqrt { } 3 \cos 2 \theta ) } { \sin \theta + \cos \theta } = \sqrt { } 6 ( \sin 2 \theta - \sqrt { } 3 \cos 2 \theta )$$ for \(0 \leq \theta < 360 ^ { \circ }\) .
Question 3
View details
3.Given that \(x > y > 0\) ,
(a)by writing \(\log _ { y } x = z\) ,or otherwise,show that \(\log _ { y } x = \frac { 1 } { \log _ { x } y }\) .
(b)Given also that \(\log _ { x } y = \log _ { y } x\) ,show that \(y = \frac { 1 } { x }\) .
(c)Solve the simultaneous equations $$\begin{gathered} \log _ { x } y = \log _ { y } x
\log _ { x } ( x - y ) = \log _ { y } ( x + y ) \end{gathered}$$
Question 4
View details
4.The line with equation \(y = m x\) is a tangent to the circle \(C _ { 1 }\) with equation $$( x + 4 ) ^ { 2 } + ( y - 7 ) ^ { 2 } = 13$$ (a)Show that \(m\) satisfies the equation $$3 m ^ { 2 } + 56 m + 36 = 0$$ The tangents from the origin \(O\) to \(C _ { 1 }\) touch \(C _ { 1 }\) at the points \(A\) and \(B\) .
(b)Find the coordinates of the points \(A\) and \(B\) .
(8)
Another circle \(C _ { 2 }\) has equation \(x ^ { 2 } + y ^ { 2 } = 13\) .The tangents from the point \(( 4 , - 7 )\) to \(C _ { 2 }\) touch it at the points \(P\) and \(Q\) .
(c)Find the coordinates of either the point \(P\) or the point \(Q\) .
(2)
Question 5
View details
5.The lines \(L _ { 1 }\) and \(L _ { 2 }\) have vector equations
\(L _ { 1 } : \quad \mathbf { r } = - 2 \mathbf { i } + 11.5 \mathbf { j } + \lambda ( 3 \mathbf { i } - 4 \mathbf { j } - \mathbf { k } )\),
\(L _ { 2 } : \quad \mathbf { r } = 11.5 \mathbf { i } + 3 \mathbf { j } + 8.5 \mathbf { k } + \mu ( 7 \mathbf { i } + 8 \mathbf { j } - 11 \mathbf { k } )\),
where \(\lambda\) and \(\mu\) are parameters.
(a)Show that \(L _ { 1 }\) and \(L _ { 2 }\) do not intersect.
(b)Show that the vector \(( 2 \mathbf { i } + \mathbf { j } + 2 \mathbf { k } )\) is perpendicular to both \(L _ { 1 }\) and \(L _ { 2 }\) . The point \(A\) lies on \(L _ { 1 }\) ,the point \(B\) lies on \(L _ { 2 }\) and \(A B\) is perpendicular to both \(L _ { 1 }\) and \(L _ { 2 }\) .
(c)Find the position vector of the point \(A\) and the position vector of the point \(B\) .
(8)
\includegraphics[max width=\textwidth, alt={}, center]{0df09d8a-7478-4679-b117-128ee226db6a-4_554_1017_404_571} Figure 1 shows a sketch of part of the curve \(C\) with equation $$y = \sin ( \ln x ) , \quad x \geq 1 .$$ The point \(Q\) ,on \(C\) ,is a maximum.
Question 6
View details
(a)Show that the point \(P ( 1,0 )\) lies on \(C\) .
(b)Find the coordinates of the point \(Q\) .
(c)Find the area of the shaded region between \(C\) and the line \(P Q\) .
Question 7
View details
7.
\includegraphics[max width=\textwidth, alt={}, center]{0df09d8a-7478-4679-b117-128ee226db6a-5_648_1590_296_275} The circle \(C _ { 1 }\) has centre \(O\) and radius \(R\). The tangents \(A P\) and \(B P\) to \(C _ { 1 }\) meet at the point \(P\) and angle \(A P B = 2 \alpha , 0 < \alpha < \frac { \pi } { 2 }\). A sequence of circles \(C _ { 1 } , C _ { 2 } , \ldots , C _ { n } , \ldots\) is drawn so that each new circle \(C _ { n + 1 }\) touches each of \(C _ { n } , A P\) and \(B P\) for \(n = 1,2,3 , \ldots\) as shown in Figure 2. The centre of each circle lies on the line \(O P\).
  1. Show that the radii of the circles form a geometric sequence with common ratio $$\frac { 1 - \sin \alpha } { 1 + \sin \alpha }$$
  2. Find, in terms of \(R\) and \(\alpha\), the total area enclosed by all the circles, simplifying your answer. The area inside the quadrilateral \(P A O B\), not enclosed by part of \(C _ { 1 }\) or any of the other circles, is \(S\).
  3. Show that $$S = R ^ { 2 } \left( \alpha + \cot \alpha - \frac { \pi } { 4 } \operatorname { cosec } \alpha - \frac { \pi } { 4 } \sin \alpha \right) .$$
  4. Show that, as \(\alpha\) varies, $$\frac { \mathrm { d } S } { \mathrm {~d} \alpha } = R ^ { 2 } \cot ^ { 2 } \alpha \left( \frac { \pi } { 4 } \cos \alpha - 1 \right)$$
  5. Find, in terms of \(R\), the least value of \(S\) for \(\frac { \pi } { 6 } \leq \alpha \leq \frac { \pi } { 4 }\).