7.
\includegraphics[max width=\textwidth, alt={}, center]{0df09d8a-7478-4679-b117-128ee226db6a-5_648_1590_296_275}
The circle \(C _ { 1 }\) has centre \(O\) and radius \(R\). The tangents \(A P\) and \(B P\) to \(C _ { 1 }\) meet at the point \(P\) and angle \(A P B = 2 \alpha , 0 < \alpha < \frac { \pi } { 2 }\). A sequence of circles \(C _ { 1 } , C _ { 2 } , \ldots , C _ { n } , \ldots\) is drawn so that each new circle \(C _ { n + 1 }\) touches each of \(C _ { n } , A P\) and \(B P\) for \(n = 1,2,3 , \ldots\) as shown in Figure 2. The centre of each circle lies on the line \(O P\).
- Show that the radii of the circles form a geometric sequence with common ratio
$$\frac { 1 - \sin \alpha } { 1 + \sin \alpha }$$
- Find, in terms of \(R\) and \(\alpha\), the total area enclosed by all the circles, simplifying your answer.
The area inside the quadrilateral \(P A O B\), not enclosed by part of \(C _ { 1 }\) or any of the other circles, is \(S\).
- Show that
$$S = R ^ { 2 } \left( \alpha + \cot \alpha - \frac { \pi } { 4 } \operatorname { cosec } \alpha - \frac { \pi } { 4 } \sin \alpha \right) .$$
- Show that, as \(\alpha\) varies,
$$\frac { \mathrm { d } S } { \mathrm {~d} \alpha } = R ^ { 2 } \cot ^ { 2 } \alpha \left( \frac { \pi } { 4 } \cos \alpha - 1 \right)$$
- Find, in terms of \(R\), the least value of \(S\) for \(\frac { \pi } { 6 } \leq \alpha \leq \frac { \pi } { 4 }\).