Fig. 1 shows the curve with polar equation \(r = a ( 1 - \cos 2 \theta )\) for \(0 \leqslant \theta \leqslant \pi\), where \(a\) is a positive constant.
\begin{figure}[h]
\end{figure}
Find the area of the region enclosed by the curve.
Given that \(\mathrm { f } ( x ) = \arctan ( \sqrt { 3 } + x )\), find \(\mathrm { f } ^ { \prime } ( x )\) and \(\mathrm { f } ^ { \prime \prime } ( x )\).
Hence find the Maclaurin series for \(\arctan ( \sqrt { 3 } + x )\), as far as the term in \(x ^ { 2 }\).
Hence show that, if \(h\) is small, \(\int _ { - h } ^ { h } x \arctan ( \sqrt { 3 } + x ) \mathrm { d } x \approx \frac { 1 } { 6 } h ^ { 3 }\).