OCR MEI FP2 2008 January — Question 1

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2008
SessionJanuary
TopicPolar coordinates

1
  1. Fig. 1 shows the curve with polar equation \(r = a ( 1 - \cos 2 \theta )\) for \(0 \leqslant \theta \leqslant \pi\), where \(a\) is a positive constant. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{43b4c7ed-3556-4d87-8aef-0111fe747982-2_529_620_577_799} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} Find the area of the region enclosed by the curve.
    1. Given that \(\mathrm { f } ( x ) = \arctan ( \sqrt { 3 } + x )\), find \(\mathrm { f } ^ { \prime } ( x )\) and \(\mathrm { f } ^ { \prime \prime } ( x )\).
    2. Hence find the Maclaurin series for \(\arctan ( \sqrt { 3 } + x )\), as far as the term in \(x ^ { 2 }\).
    3. Hence show that, if \(h\) is small, \(\int _ { - h } ^ { h } x \arctan ( \sqrt { 3 } + x ) \mathrm { d } x \approx \frac { 1 } { 6 } h ^ { 3 }\).