OCR MEI FP2 (Further Pure Mathematics 2) 2008 January

Question 1
View details
1
  1. Fig. 1 shows the curve with polar equation \(r = a ( 1 - \cos 2 \theta )\) for \(0 \leqslant \theta \leqslant \pi\), where \(a\) is a positive constant. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{43b4c7ed-3556-4d87-8aef-0111fe747982-2_529_620_577_799} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} Find the area of the region enclosed by the curve.
    1. Given that \(\mathrm { f } ( x ) = \arctan ( \sqrt { 3 } + x )\), find \(\mathrm { f } ^ { \prime } ( x )\) and \(\mathrm { f } ^ { \prime \prime } ( x )\).
    2. Hence find the Maclaurin series for \(\arctan ( \sqrt { 3 } + x )\), as far as the term in \(x ^ { 2 }\).
    3. Hence show that, if \(h\) is small, \(\int _ { - h } ^ { h } x \arctan ( \sqrt { 3 } + x ) \mathrm { d } x \approx \frac { 1 } { 6 } h ^ { 3 }\).
Question 2
View details
2
  1. Find the 4th roots of 16j, in the form \(r \mathrm { e } ^ { \mathrm { j } \theta }\) where \(r > 0\) and \(- \pi < \theta \leqslant \pi\). Illustrate the 4th roots on an Argand diagram.
    1. Show that \(\left( 1 - 2 \mathrm { e } ^ { \mathrm { j } \theta } \right) \left( 1 - 2 \mathrm { e } ^ { - \mathrm { j } \theta } \right) = 5 - 4 \cos \theta\). Series \(C\) and \(S\) are defined by $$\begin{aligned} & C = 2 \cos \theta + 4 \cos 2 \theta + 8 \cos 3 \theta + \ldots + 2 ^ { n } \cos n \theta
      & S = 2 \sin \theta + 4 \sin 2 \theta + 8 \sin 3 \theta + \ldots + 2 ^ { n } \sin n \theta \end{aligned}$$
    2. Show that \(C = \frac { 2 \cos \theta - 4 - 2 ^ { n + 1 } \cos ( n + 1 ) \theta + 2 ^ { n + 2 } \cos n \theta } { 5 - 4 \cos \theta }\), and find a similar expression for \(S\).
Question 3
View details
3 You are given the matrix \(\mathbf { M } = \left( \begin{array} { r r } 7 & 3
- 4 & - 1 \end{array} \right)\).
  1. Find the eigenvalues, and corresponding eigenvectors, of the matrix \(\mathbf { M }\).
  2. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { M P } = \mathbf { D }\).
  3. Given that \(\mathbf { M } ^ { n } = \left( \begin{array} { l l } a & b
    c & d \end{array} \right)\), show that \(a = - \frac { 1 } { 2 } + \frac { 3 } { 2 } \times 5 ^ { n }\), and find similar expressions for \(b , c\) and \(d\). Section B (18 marks)
Question 4
View details
4
  1. Given that \(k \geqslant 1\) and \(\cosh x = k\), show that \(x = \pm \ln \left( k + \sqrt { k ^ { 2 } - 1 } \right)\).
  2. Find \(\int _ { 1 } ^ { 2 } \frac { 1 } { \sqrt { 4 x ^ { 2 } - 1 } } \mathrm {~d} x\), giving the answer in an exact logarithmic form.
  3. Solve the equation \(6 \sinh x - \sinh 2 x = 0\), giving the answers in an exact form, using logarithms where appropriate.
  4. Show that there is no point on the curve \(y = 6 \sinh x - \sinh 2 x\) at which the gradient is 5 .
Question 5
View details
5 A curve has parametric equations \(x = \frac { t ^ { 2 } } { 1 + t ^ { 2 } } , y = t ^ { 3 } - \lambda t\), where \(\lambda\) is a constant.
  1. Use your calculator to obtain a sketch of the curve in each of the cases $$\lambda = - 1 , \quad \lambda = 0 \quad \text { and } \quad \lambda = 1 .$$ Name any special features of these curves.
  2. By considering the value of \(x\) when \(t\) is large, write down the equation of the asymptote. For the remainder of this question, assume that \(\lambda\) is positive.
  3. Find, in terms of \(\lambda\), the coordinates of the point where the curve intersects itself.
  4. Show that the two points on the curve where the tangent is parallel to the \(x\)-axis have coordinates $$\left( \frac { \lambda } { 3 + \lambda } , \pm \sqrt { \frac { 4 \lambda ^ { 3 } } { 27 } } \right)$$ Fig. 5 shows a curve which intersects itself at the point ( 2,0 ) and has asymptote \(x = 8\). The stationary points A and B have \(y\)-coordinates 2 and - 2 . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{43b4c7ed-3556-4d87-8aef-0111fe747982-4_791_609_1482_769} \captionsetup{labelformat=empty} \caption{Fig. 5}
    \end{figure}
  5. For the curve sketched in Fig. 5, find parametric equations of the form \(x = \frac { a t ^ { 2 } } { 1 + t ^ { 2 } } , y = b \left( t ^ { 3 } - \lambda t \right)\), where \(a , \lambda\) and \(b\) are to be determined.