A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Polar coordinates
Q1
OCR MEI FP2 2006 January — Question 1
Exam Board
OCR MEI
Module
FP2 (Further Pure Mathematics 2)
Year
2006
Session
January
Topic
Polar coordinates
1
A curve has polar equation \(r = a \cos 3 \theta\) for \(- \frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\), where \(a\) is a positive constant.
Sketch the curve, using a continuous line for sections where \(r > 0\) and a broken line for sections where \(r < 0\).
Find the area enclosed by one of the loops.
Find the exact value of \(\int _ { 0 } ^ { \frac { 3 } { 4 } } \frac { 1 } { \sqrt { 3 - 4 x ^ { 2 } } } \mathrm {~d} x\).
Use a trigonometric substitution to find \(\int _ { 0 } ^ { 1 } \frac { 1 } { \left( 1 + 3 x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathrm {~d} x\).
This paper
(5 questions)
View full paper
Q1
Q2
Q3
Q4
Q5