OCR MEI FP2 (Further Pure Mathematics 2) 2006 January

Question 1
View details
1
  1. A curve has polar equation \(r = a \cos 3 \theta\) for \(- \frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\), where \(a\) is a positive constant.
    1. Sketch the curve, using a continuous line for sections where \(r > 0\) and a broken line for sections where \(r < 0\).
    2. Find the area enclosed by one of the loops.
  2. Find the exact value of \(\int _ { 0 } ^ { \frac { 3 } { 4 } } \frac { 1 } { \sqrt { 3 - 4 x ^ { 2 } } } \mathrm {~d} x\).
  3. Use a trigonometric substitution to find \(\int _ { 0 } ^ { 1 } \frac { 1 } { \left( 1 + 3 x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathrm {~d} x\).
Question 2
View details
2 In this question, \(\theta\) is a real number with \(0 < \theta < \frac { 1 } { 6 } \pi\), and \(w = \frac { 1 } { 2 } \mathrm { e } ^ { 3 \mathrm { j } \theta }\).
  1. State the modulus and argument of each of the complex numbers $$w , \quad w ^ { * } \quad \text { and } \quad \mathrm { j } w .$$ Illustrate these three complex numbers on an Argand diagram.
  2. Show that \(( 1 + w ) \left( 1 + w ^ { * } \right) = \frac { 5 } { 4 } + \cos 3 \theta\). Infinite series \(C\) and \(S\) are defined by $$\begin{aligned} & C = \cos 2 \theta - \frac { 1 } { 2 } \cos 5 \theta + \frac { 1 } { 4 } \cos 8 \theta - \frac { 1 } { 8 } \cos 11 \theta + \ldots
    & S = \sin 2 \theta - \frac { 1 } { 2 } \sin 5 \theta + \frac { 1 } { 4 } \sin 8 \theta - \frac { 1 } { 8 } \sin 11 \theta + \ldots \end{aligned}$$
  3. Show that \(C = \frac { 4 \cos 2 \theta + 2 \cos \theta } { 5 + 4 \cos 3 \theta }\), and find a similar expression for \(S\).
Question 3
View details
3 The matrix \(\mathbf { M } = \left( \begin{array} { r r r } 1 & 2 & 3
- 2 & - 3 & 6
2 & 2 & - 4 \end{array} \right)\).
  1. Show that the characteristic equation for \(\mathbf { M }\) is \(\lambda ^ { 3 } + 6 \lambda ^ { 2 } - 9 \lambda - 14 = 0\).
  2. Show that - 1 is an eigenvalue of \(\mathbf { M }\), and find the other two eigenvalues.
  3. Find an eigenvector corresponding to the eigenvalue - 1 .
  4. Verify that \(\left( \begin{array} { l } 3
    0
    1 \end{array} \right)\) and \(\left( \begin{array} { r } 0
    3
    - 2 \end{array} \right)\) are eigenvectors of \(\mathbf { M }\).
  5. Write down a matrix \(\mathbf { P }\), and a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { M } ^ { 3 } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).
  6. Use the Cayley-Hamilton theorem to express \(\mathbf { M } ^ { - 1 }\) in the form \(a \mathbf { M } ^ { 2 } + b \mathbf { M } + c \mathbf { I }\). Section B (18 marks)
Question 4
View details
4
  1. Solve the equation $$\sinh x + 4 \cosh x = 8$$ giving the answers in an exact logarithmic form.
  2. Find the exact value of \(\int _ { 0 } ^ { 2 } \mathrm { e } ^ { x } \sinh x \mathrm {~d} x\).
    1. Differentiate \(\operatorname { arsinh } \left( \frac { 2 } { 3 } x \right)\) with respect to \(x\).
    2. Use integration by parts to show that \(\int _ { 0 } ^ { 2 } \operatorname { arsinh } \left( \frac { 2 } { 3 } x \right) \mathrm { d } x = 2 \ln 3 - 1\).
Question 5
View details
5 A curve has equation \(y = \frac { x ^ { 3 } - k ^ { 3 } } { x ^ { 2 } - 4 }\), where \(k\) is a positive constant and \(k \neq 2\).
  1. Find the equations of the three asymptotes.
  2. Use your graphical calculator to obtain rough sketches of the curve in the two separate cases \(k < 2\) and \(k > 2\).
  3. In the case \(k < 2\), your sketch may not show clearly the shape of the curve near \(x = 0\). Use calculus to show that the curve has a minimum point when \(x = 0\).
  4. In the case \(k > 2\), your sketch may not show clearly how the curve approaches its asymptote as \(x \rightarrow + \infty\). Show algebraically that the curve crosses this asymptote.
  5. Use the results of parts (iii) and (iv) to produce more accurate sketches of the curve in the two separate cases \(k < 2\) and \(k > 2\). These sketches should indicate where the curve crosses the axes, and should show clearly how the curve approaches its asymptotes. The presence of stationary points should be clearly shown, but there is no need to find their coordinates.