2 In this question, \(\theta\) is a real number with \(0 < \theta < \frac { 1 } { 6 } \pi\), and \(w = \frac { 1 } { 2 } \mathrm { e } ^ { 3 \mathrm { j } \theta }\).
- State the modulus and argument of each of the complex numbers
$$w , \quad w ^ { * } \quad \text { and } \quad \mathrm { j } w .$$
Illustrate these three complex numbers on an Argand diagram.
- Show that \(( 1 + w ) \left( 1 + w ^ { * } \right) = \frac { 5 } { 4 } + \cos 3 \theta\).
Infinite series \(C\) and \(S\) are defined by
$$\begin{aligned}
& C = \cos 2 \theta - \frac { 1 } { 2 } \cos 5 \theta + \frac { 1 } { 4 } \cos 8 \theta - \frac { 1 } { 8 } \cos 11 \theta + \ldots
& S = \sin 2 \theta - \frac { 1 } { 2 } \sin 5 \theta + \frac { 1 } { 4 } \sin 8 \theta - \frac { 1 } { 8 } \sin 11 \theta + \ldots
\end{aligned}$$ - Show that \(C = \frac { 4 \cos 2 \theta + 2 \cos \theta } { 5 + 4 \cos 3 \theta }\), and find a similar expression for \(S\).