OCR MEI C4 (Core Mathematics 4)

Question 2
View details
2 In Fig. 6, \(\mathrm { ABC } , \mathrm { ACD }\) and AED are right-angled triangles and \(\mathrm { BC } = 1\) unit. Angles CAB and CAD are \(\theta\) and \(\phi\) respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c8ea5913-c527-40e7-bfcc-c1c2df544e04-2_452_535_437_781} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find AC and AD in terms of \(\theta\) and \(\phi\).
  2. Hence show that \(\mathrm { DE } = 1 + \frac { \tan \phi } { \tan \theta }\).
Question 3 5 marks
View details
3 Verify that the vector \(\mathbf { d } - \mathbf { j } + 4 \mathbf { k }\) is perpendicular to the plane through the points \(\mathrm { A } ( 2,0,1 ) , \mathrm { B } ( 1,2,2 )\) and \(\mathrm { C } ( 0 , - 4,1 )\). Hence find the cartesian equation of the plane. [5]
Question 4
View details
4 Show that the straight lines with equations \(\mathbf { r } = \begin{array} { r r r } 2 & + \lambda & 0
4 & & 1 \end{array}\) and \(\mathbf { r } = \quad + \mu \quad\) meet.
Find their point of intersection.
Question 5
View details
5 The points A , B and C have coordinates \(( 2,0 , - 1 ) , ( 4,3 , - 6 )\) and \(( 9,3 , - 4 )\) respectively.
  1. Show that AB is perpendicular to BC .
  2. Find the area of triangle ABC .
Question 6
View details
6
  1. Verify that the lines \(\left. \mathbf { r } = \begin{array} { r } - 5
    3
    4 \end{array} \right) + \lambda \left( \begin{array} { r } 3
    0
    - 1 \end{array} \right)\) and \(\left. \left. \mathbf { r } = \begin{array} { r } - 1
    4
    2 \end{array} \right) + \mu - \begin{array} { r } 2
    - 1
    0 \end{array} \right)\) meet at the point ( \(1,3,2\) ).
  2. Find the acute angle between the lines.